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    Melatonin and the hair follicle

Introduction

        Observations suggesting that the pineal gland and its chief

        secretory product, melatonin [1, 2], are involved in the

       regulation of hair growth and pigmentation date back

     several decades, and have long-intrigued chronobiologists,

    animal scientists, veterinarians, endocrinologists, dermatol-

       ogists and researchers in the wool-industry among others

        [3–9]. Thus, it is well-recognized that melatonin can alter

       wool and cashmere production, the development and cycle

        frequency of pelage, seasonal molting and coat color in

      several species, presumably as a major neuroendocrine

       regulator that couples coat phenotype and function to

   photoperiod-dependent environmental and reproductive

  changes [10, 11].

         Yet, the understanding of the role of melatonin in hair

         follicle (HF) biology is still very limited. Because of the

      complexity of melatonin interactions and metabolism [11–

      18] and the substantial, often seemingly contradictory

     species-, gender-, and dose-dependency of melatonin-

          related hair effects [7, 10, 11, 19–26], the picture of the

          exact functions of melatonin in hair biology seems to be still

    a blurred and confusing one.

       However, the recent discovery that mammalian skin not

         only is a target of melatonin bioactivity, but also an

       important extrapineal site of its synthesis, regulation and

        metabolism [13, 27–29], and that additionally even in HFs

        of normal mouse skin and human scalp melatonin was

        detected [11, 18, 30], has re-vitalized general interest in

        melatonin as a modulator of hair growth and/or pigmen-

tation.

      On this background, after summarizing some salient

         features of melatonin biology that are most pertinent in the

      current context, this review summarizes the available

        evidence indicating a significant role of melatonin in hair

         biology. We will interpret this evidence in view of emerging

         concepts on the role of melatonin in general skin biology.

      Major open questions and unresolved controversies are

      defined and particularly promising avenues for future

      research into the melatonin-hair connection and itsÔ Õ

    potential clinical implications are delineated.

    Melatonin biology in a nutshellÔ Õ

      Melatonin is a phylogenetically ancient, highly conserved

      indole with astoundingly pleiotropic biologic effects on
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        multiple cells, tissues and organisms. Because of its highly

      lipophilic chemical structure, it easily penetrates cell

        membranes and organelles where it, as well as its

     metabolites, protects intra- and extracellular components

      from oxidative damage [31–36]. Melatonin is generated

       enzymatically in a cascade of reactions beginning with

       uptake of the essential amino-acid -tryptophan and thel

     enzymatic formation of 5-hydroxytryptophan by trypto-

       phan hydroxylase (TPH) via its essential co-factor (6R)

 5,6,7,8-tetrahydrobiopterin (6-BH 4   ) [37–39]. Decarboxyl-

      ation produces serotonin and further synthesis requiring

    the alleged rate-limiting enzyme arylalkylamine- -acetyl-N

        transferase (AANAT, EC 2.3.1.87) [2, 40–43] leads to the

     formation of -acetylserotonin. Further methylation byN

  hydroxy-indol- -methyltransferase (HIOMT) producesO

       melatonin [18, 27] (Fig. 1). While decarboxylases are

       available in most tissues, the enzymes TPH, AANAT

        and HIOMT have to be present locally to enable

       melatonin synthesis [44]. In mammals, melatonin was long

        thought to be secreted predominantly by the pineal gland,

      but several important extrapineal sites of melatonin

        synthesis are now recognized as well, as shown recently

         for most cell types and tissues of cutaneous origin and

       even for murine and human HFs [11, 27].

        Metabolism of melatonin can occur in an organ- and/or

    compartment-dependent manner via systemic metabolism

          of melatonin after oral intake or by release from the pineal

        gland mediated in the liver by cytochrome p-450 and

    6-hydroxylase to produce 6-hydroxymelatonin (6-OH-mel).

        6-OH-mel is the main systemic metabolite found in the

         human body and is further conjugated in the kidney by

        sulfate to be excreted in the urine as 6-sulphathoxymela-

      tonin [45–47]. Alternative pathways degrade melatonin to

  5-methoxytryptamine (5-MT), 5-methoxyacetaldehyde,

   5-methoxy-indol-acetic acid and 5-methoxytryptophol

       [18]. Oxidation of melatonin by reactive oxygen species

     (ROS) [48–50], or enzymatically by 2,3-dioxygenase,

     myeloperoxidase or oxyferrylhemoglobin, leads to the

      formation of the intermediates 2-hydroxy and 4-hydrox-

     ymelatonin (2-OH/4-OH-mel) and finally to N 1
-acetyl-

N2
    -formyl-5-methoxykynuramine (AFMK). The latter is

     further degraded by catalase to N
1

-acetyl-5-methoxykynur-

        amine (AMK) [13, 17, 51, 52]. Alternatively, AMK has

        recently been found to be also produced by mitochondrial

   cytochrome c oxidation [14].

     In mammals, melatonin, modifies numerous physiological

       processes, of which seasonal biological rhythms [53, 54],

      daily sleep induction, and modulation of immunological

              Fig. 1. NPathway of melatonin synthesis and metabolism. TPH, tryptophane hydroxylase; DC, decarboxylase; AANAT, arylalkyl- -acetyl-

          transferase; HIOMT, hydroxy-indol- -methyltransferase; Ser, serotonin; NAS, -acetylserotonin; Mel, melatonin; 5-MT, 5-methoxy-O N

         tryptamine; 5-MAA, 5-methoxyacetaldehyde; 5-MIAA, 5-methoxy-indol acetic acid; 5-MTphol, 5-methoxy-tryptophol; 6-OH-Mel,

6-hydroxymelatonin.
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       defense reactions [55] represent but a few prominent

    examples. Furthermore, melatonin exerts anti-carcinogenic

           activities both in vitro and in vivo, that can be enhanced by

       expression of MT1, MT2 or retinoid-related orphan recep-

         tor (ROR ) receptors depending on the cell line [56–61].a a

      The exceptionally wide range of documented biological

        activities of melatonin in different systems, cells, and species

       is further complicated by many (biologically active) deriv-

         atives that are generated in vivo from melatonin [16]. In

      addition to its mainly receptor-mediated functions, mela-

     tonin also exerts direct receptor-independent chemical

        effects, which render it a potent radical scavenger [12,

      62–64] as well as a chemocytotoxicity-preventive substance

 [62, 65].

       Melatonin binding protein have been first described in

          murine skin in the epidermis and the epithelial bulb of the

        HF [66]. At present, melatonin receptors can be specifically

     identified as membrane-bound, cytosolic and nuclear

       receptors [67–69] (Table 1). MT1 and MT2 receptors

       (formerly Mel1a and Mel1b) are membrane-bound, G pro-

       tein-coupled receptors that were initially thought to be

       expressed primarily in the central nervous system (first

           identified as MT1 in the retina and MT2 in the brain of

      chicken and hamster. As then, melatonin membrane

       receptors have been associated with many different sites

        and functions, e.g., MT1 transcripts have now also been

        found in murine heart, kidney, liver, and lung tissue,

          while MT2 mRNA was also detected in mouse lung [56, 68,

 70, 71].

       A third specific melatonin binding site, initially named

        MT3, was later identified as the cytosolic enzyme, NRH:

       quinone oxidoreductase 2 (NQO2, EC 1.6.99.2), a flavo-

       protein that catalyzes the reduction of quinones and

           therefore is related to the redox status of the cell [67, 72,

         73]. To date, the biological role of NQO2 is poorly

        understood, but there is some evidence for association with

      anti-carcinogenic effects, as NQO2 knockout mice are

       significantly more sensitive to skin tumor induction by

       carcinogens compared with normal mice [74]. In functional

       cell growth assays of malignant cells (e.g., melanoma),

       NQO2 correlated with tumor suppressive effects of mela-

          tonin [60] and NQO2 is also involved in the protection of

        cells by melatonin from oxidative damage [75]. Thus, it

          might be hypothesized that NQO2 may play a role in the

     prevention of (oxidative?) stress-induced HF catagen

        regression, and this is supported by the wide expression

          of the NQO2 gene in human skin [30] (Table 1). However,

         next to nothing is yet known about the NQO2 hair-

connection.

        The nuclear receptors for melatonin belong to the RORa

        that is a member of the RZR/ROR subfamily. This

       subfamily consists of at least four splicing variants:

       ROR 1, ROR 2, ROR 3 and RZR (RORa a a a a4) [69, 76,

        77]. We recently suggested to change the nomenclature of

        the last isoform (RZR ) to ROR 4 for consistent termi-a a

         nology, as RZR and ROR 4 differ only by a singlea a

       nucleotide substitution [30]. ROR appears to be widelya

        expressed, with the highest levels found in leukocytes and

      skin [78]. While classical chronobiology considers melato-

        nin exclusively a hormone occurring in the plasma at

       daytime levels of 20–50 pg/mL in mammals including

        humans, recent data have revealed a variety of compart-

       ments including bile, bone marrow, cerebrospinal fluid, and

       gastric mucosa [79–82] that not only represent important

        sites of extrapineal melatonin synthesis in situ, but even

      more surprisingly reveal melatonin concentrations at orders

         of magnitudes higher than those in the plasma. These data

        therefore support the view that melatonin might occur at

    tissue-specific concentrations in different compartments

       where it exerts biologically-relevant effects at both physi-

     ological and pharmacological concentrations [83, 84].

       While the relevance of melatonin has been systematically

       investigated in different organ systems, including ovary [85],

            eye [86], gut [82, 87, 88], bone marrow [79] as well as in

         lymphocytes [89], and skin (reviewed in [12, 18, 30, 90]),

       detailed, systematic knowledge of melatonin in hair biology

  remains rather limited.

      Melatonin receptor expression in the hair follicle

       Some of the reported hair growth- and/or pigmentation-

       modulatory effects of melatonin might result from receptor

       independent, direct effects of melatonin, while others are

       likely to result from signaling via functional melatonin

   receptors expressed by HFs.

        Genes encoding the MT1 receptor have been identified in

        HF keratinocytes and dermal papilla fibroblasts, but not in

       HF melanocytes [28] (Table 1). Moreover, an aberrant

        form of MT2 has been identified in dermal papilla

        fibroblasts, but was not expressed by HF keratinocytes or

    melanocytes. Hair-cycle-dependent MT2 and RORa

      mRNA transcription [as assessed by reverse transcriptase

       polymerase chain reaction (RT-PCR)] has been reported in

        C57BL/6 mouse skin, although not in single murine HFs,

       where MT2 expression was up-regulated in late-anagen and

       catagen, and down-regulated in telogen (Table 1). Alterna-

       tively, ROR was down-regulated in late anagen anda

        up-regulated in late catagen and decreased in telogen [11].

         In contrast to human cell lines, MT1 expression was not

         found in mouse skin and no high affinity melatonin binding

          site was found in cashmere goat skin [11, 91] (Table 1).

    Prominent ROR -like immunoreactivity (IR) wasa

       detected in the mesenchymal dermal papilla and the

        epithelial inner and outer root sheaths of C57BL/6 mouse

          pelage HFs in situ [11]. While MT1-like IR in human skin

          has but yet been detected in HFs, this receptor has been

        detected in keratinocytes of the differentiating layers of the

         epidermis and in eccrine sweat glands. MT2 receptor IR has

         only been shown in eccrine sweat glands (Fig. 2). However

       while melatonin receptors are quite likely to exhibit

       functional effects on human HF cycling and growth

       regulation, their precise expression pattern and proof of

     their functional activity is still lacking.

    Interaction of melatonin with androgen

    receptor- and estrogen receptor-mediated signaling

        Melatonin not only interacts with its cognate receptors but

       surprisingly can interact also with androgen- and estrogen

      receptor-mediated signaling pathways. This may be highly

       relevant, given the central importance of androgens and

       estrogens in hair growth control [92–94]. Melatonin is

  Melatonin and hair
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        reported to exert anti-androgenic effects on prostate cells in

        rodents, which are exerted via androgen receptors at the

      peripheral level [95, 96]. Specifically, melatonin interacts

       with the nuclear androgen receptor and counteracts its

      growth stimulatory effects by facilitating translocation of

         the receptor from the nucleus to the cytoplasm [97]. This

      translocation is mediated by a melatonin-induced increase

        in calcium and protein kinase c (PKC) activation [98].

    Furthermore, 17- -estradiol-mediated inactivation of mel-b

        atonin binding to the androgen receptor is ablated by

        preincubation of prostate cells with a specific inhibitor of

 PKC [99].

        On the other side, human prostate cells express func-

       tional melatonin receptors (MT1), and sex steroids report-

       edly interfere with the melatonin receptor in benign

       prostatic cells [99, 100], e.g., 17-b-estradiol reduces the

       affinity of the melatonin receptor to [125I]-melatonin, and

   dihydrotestoterone attenuates the melatonin-mediated

        inhibitory effects on cell growth [99, 101]. Also, the

     melatonin-related increase in 3 ,5 -cyclic adenosine mono-¢ ¢

      phosphate and decrease in 3 ,5 -cyclic guanosine mono-¢ ¢

     phosphate is attenuated by 17- -estradiol [99].b

       In other sex-steroid sensitive tissues such as ovarian

      granulosa cell membranes, MT1 expression and binding

       may be down-regulated by estradiol and up-regulated by

        FSH and testosterone [101]. On the other hand, melatonin

       has direct and indirect effects on the estrogen/estrogen-

        receptor pathway as shown in human breast cancer cells

        [102–105]. Growth of human breast cancer cells is inhibited

        via inactivation of estrogen receptor (but not estrogena

      receptor ) through activation of melatonin membraneb

       receptor MT1 and nuclear receptor RZR [104–106]. Thisa

      anti-estrogenic effects are mediated by inhibiting the

     calmodulin-mediated pathway of estrogen receptor activa-

      tion and gene transcription [104]. Additionally, melatonin

       interacts on a estrogen presynthesis step by modulating

       aromatase (the enzyme responsible for local androgen to

      estrogen transformation) activity and gene expression [107,

        108]. Recently, it has been clearly demonstrated in MT1

      receptor-transfected breast cancer cells that the MT1

        melatonin receptor is a key to reduce aromatase activity

      and expression, leading to a melatonin-induced inhibition

        of breast carcinoma cell proliferation [102]. In murine HFs,

       melatonin has already been shown to inhibit estrogen

      receptor expression in a hair-cycle-dependent manner,a

       with maximum mRNA reduction in late anagen and

        telogen, whereas estrogen receptor protein is reduced bya

     melatonin in all hair-cycle phases [11].

       From the above observations, several conclusions may be

         drawn to help explain the effects of melatonin in hair

       growth regulation: as the high affinity melatonin receptor

        MT1 expressed in human prostate epithelial cells and breast

          cancer cells is the same as the MT1 receptor expressed in

       human skin [28], the anti-androgenic effects of melatonin

         might be also expressed in the skin. Similar conclusions for

          the HF might be drawn carefully, as the expression of MT1

          has been only shown for single cells of human HF origin

      (HF keratinocytes, dermal papilla fibroblasts), and in

       human epidermis [28]. It is hypothesized, although, that

      melatonin s anti-androgenetic effects could be mediated via¢

       the same mechanisms as described for prostate epithelial

        and breast cancer cells. Such mechanism could very well

       explain the clinically observed anti-hair loss effects of

     melatonin in androgenetic alopecia (AGA) [25].

   Melatonin and the skin

       Over the last decade, increasing evidence has accumulated

         that melatonin plays a significant role in skin biology –

       either as an endogenous factor within the melatoninergic

        functionally active system of the skin or when exogenously

         administered (reviewed in [12, 13, 18, 27, 28, 30, 90,

 109, 110]).

     Mammalian skin expresses melatonin binding sites,

      membrane receptors, cytosolic and nuclear receptors [28,

         30, 66, 111, 112]. Whereas mouse skin expresses MT2, but

        not MT1 receptor [11, 112], human skin shows variable

       expression of both receptors. Skin-derived cells in vitro

        mainly express MT1 and an aberrant form of MT2,

         whereas MT1 is expressed in situ in epidermis, HF, eccrine

        glands, blood vessel endothelium while and MT2 is only

       weakly expressed in HF inner-root sheath (IRS), eccrine

        glands, and blood vessel endothelium (Table 1) [28, 30].

      The ROR and its isoforms are heterogeneouslya

        expressed in different cell lines of cutaneous origin as

        assessed by RT-PCR (Table 1). While RORa a1 and ROR 4

       are expressed in adult dermal fibroblasts, the isoform

       ROR 2 was detected only in an immortalized melanocytea

          line (PIG-1). ROR 3 has not been detected in any cell linea

    investigated so far, though ROR     a4 was detected in malig-

    nant melanoma cells [30, 60].

          The skin – the largest organ of the mammalian body –

        has been identified as yet another, important site of

     peripheral, extra-pineal melatonin synthesis. This work

(A)

(B)

(C)

        Fig. 2. Localization of immunoreactivity (IR) of melatonin in

         human scalp skin. (A) Melatonin-IR is mainly expressed in the

        differentiating keratinocytes of the upper layers of the epidermis
           (spinous and granular layer) and in the blood vessels. (B) In the

        hair bulb, melatonin-IR is expressed in the matrix keratinocytes,

          the blood vessels of the dermal papilla and the connective tissue

           sheath. (C) In the hair shaft, melatonin-IR is detected in the outer

 root sheath.
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        was stimulated by the discovery that hamster skin contains

        activity for AANAT, the key enzyme of melatonin synthesis

         [113]. This finding prompted a series of further studies that

       reported expression of a full melatoninergic system in

           human and rodent skin in situ as well as several of their

         constituent cell populations in vitro [27, 29, 37, 114, 115]

       (Fig. 1). Specifically, transcripts of the key relevant

       enzymes for melatonin synthesis, and the actual protein

       synthesis and/or activity of these enzymes have been

         identified both in the intact tissue and in primary cutaneous

       cell populations prepared from hamster, mouse [11, 115]

     and human skin [11, 27, 114].

       An important exception to the classical pathway of

         intrapineal melatonin synthesis can be found in the skin of

        C57BL/6 mouse. These mice have a mutation in the

        AANAT gene, which results in the production of an

        inactive enzyme. Here serotonin is acetylated to NAS, the

      obligate precursor to melatonin by alternative enzyme(s)

        [115]. Therefore, the C57BL/6 mouse should not any longer

       be considered a natural melatonin knockdown species, asÔ Õ

         it is still often claimed [116], because NAS of cutaneous

         origin may be methylated to melatonin at local or distant

      tissue sites expressing HIOMT activity [18, 115].

        While the skin is richly endowed with the required

       precursors for melatonin synthesis (e.g., via massive stores

        of serotonin within murine skin mast cell granules [117]),

        the essential enzymes for melatonin synthesis have all been

         identified in mammalian skin, and in a great variety of

       isolated, cultured human skin cells [27–29, 114]. Redundant

         to the above mentioned evidence that human or mouse skin

      actually engages in extrapineal melatonin synthesis, mela-

        tonin detection in situ has been missing until recently.

       However, melatonin-IR has been found in epidermis and

           blood vessels of human scalp skin as well as in the outer-

        root sheath (ORS) and the hair-follicle bulb (Fig. 2).

     Constitutive melatonin production [18] and UV-induced

      melatonin metabolism, with additional formation of anti-

       oxidant degradation products, has been identified in human

      keratinocytes [13], thereby defining a melatoninergic anti-

         oxidative system in the skin to protect against sun damage

     [13]. While melatonin ameliorates UV-induced oxidative

       stress, it also inhibits melanogenesis and melanocyte growth

 [61, 118–120].

    Melatonin exerts growth regulatory (stimulatory/inhibi-

       tory) effects in benign cells (human keratinocytes and

     fibroblasts) depending on the experimental conditions

   (serum-free/serum-supplemented, UV-exposed) [28, 34,

      121], but shows clearly growth suppressive, anti-tumori-

         genic effects in malignant melanoma cells [30, 58, 60, 122,

       123]. Melatonin has entered clinical use for metastatic

       malignant melanoma [124–126], but this anti-tumor effect is

          not limited to pigment cells, but has been found also in

        breast cancer [56, 127], colon carcinoma [57, 128], and

      squamous cell carcinoma [30]. In UV-induced damage,

       melatonin can reduce ROS more effectively than even

         vitamin C and trolox [33, 129, 130], and promotes cell

       survival and colony growth by influencing several check-

       points of apoptosis [34, 36]. Indeed, pretreatment of

       UV-exposed skin with melatonin, either alone or in

        combination with vitamin C and E, can significantly reduce

  UV-induced erythema [131–133].

  The melatonin-hair connectionÔ Õ

       Hair follicles and their associated sebaceous glands ( pilo-Ô

       sebaceous unit ) are the skin s most prominent appendagesÕ Õ

        and, together with the mammary gland, represent one of

        the defining features of mammals. This mini-organ, which is

      constructed as the result of complex neuroectodermal-

        mesodermal interactions [94, 134–136], not only is a target

    organ for numerous (neuro-)hormones, neuropeptides,

     neurotrophins, and neurotransmitters, but also produces

          many of these [137–141]. For example, the HF is both a

        target and source of prolactin [142, 143], estrogen [144],

       cortisol [145], CRH [146], thyroid hormones [147], and

      erythropoietin [148], and exhibits a functional hypotha-

      lamic–pituitary–adrenal axis [145] that has been also

        described for the skin [149]. Thus, the pilosebaceous unit

         is best viewed as a major neuroendocrine organ. On this

       emerging background, it is particularly intriguing to eval-

       uate the existing evidence that yet another neuroendocrine

        key mediator – melatonin – also enjoys intimate connec-

      tions with the biology of the HF.

     Extrapineal melatonin synthesis by human and

  mouse hair follicles

       It is increasingly appreciated that multiple extrapineal sites

          of melatonin synthesis exist in mammals [79, 80, 86, 88, 89],

         and mammalian skin has been shown to express the full

       enzymatic apparatus (and all the substrates and co-factors)

        necessary for melatonin synthesis [27, 29]. Therefore, it was

       rather confirmative, when final evidence for actual melato-

         nin synthesis in mammalian skin in situ was generated by

        showing that mouse and human HFs actively generate this

    indoleamine under organ-culture conditions [11].

       To begin with, prominent melatonin-like IR in human

         scalp HFs in situ has been independently reported by two

      laboratories, using different primary antibodies and immu-

      nohistological detection techniques [11, 18]. In normal

         human scalp skin sections, melatonin-like IR is seen in the

          HF ORS, at lower levels in the keratinocytes of the hair

        bulb matrix, blood vessels of the connective tissue sheath

         and in the basal lamina separating the hair bulb matrix

       from the follicular papilla. Distinct melatonin-like IR was

        also detected in the ORS of organ-cultured human scalp

         HFs, and also in the lower IRS and follicular papilla

       fibroblasts [11]. Interestingly, the latter study also revealed

         melatonin IR in keratinocytes of the ORS and the lower

            part of the IRS in murine back skin, as well as in the

     sebaceous gland and showed discrete, hair-cycle-dependent

      changes in expression [11]. IR for serotonin- -acetyltrans-N

        ferase in human scalp epidermis and HF epithelium has

   also been reported [18].

       However, specific follicular melatonin-like IR in skin and

     its appendages may represent serum-derived melatonin

     bound to intrafollicular melatonin receptors/binding sites,

        and thus does not, by itself, prove intrafollicular melatonin

       synthesis. Although already much less likely, a similar

        argument may still be evoked for explaining the intriguing

      radioimmuno assay (RIA) finding that tissue extracts

     showed 100–500-fold higher melatonin concentrations in

        murine vibrissae follicles and human scalp HFs than in
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      corresponding serum [11]. The most convincing evidence

        available so far that mouse skin fragments, mouse vibrissae

       follicles, and human scalp HFs do indeed synthesize

       melatonin was provided in HF organ culture where

      melatonin levels were significantly increased after stimula-

       tion with norepinephrin [11] – the physiological key

       stimulus in the -adrenergic control of intrapineal melato-b

  nin synthesis [150].

     Hair growth-modulatory effects of melatonin in
 nonhuman mammals

        An indication that melatonin may modulate hair growth in

      several nonhuman mammalian species was proposed sev-

           eral decades ago. In the late sixties, the first influence of the

          pineal gland on hair cycle in mice was reported [5], followed

        by several studies reporting an induction or stimulation of

          the autumn molt in weasel, mink, red deer, and soay rams

        [7, 151–153] (Table 2). Thus, mammals exhibit a circadian

         and seasonal rhythm, which is most evident in those species

       that modulate their hair/fur growth according to seasonal

       alteration of the photoperiod (molting). This influence on

         fur was later described in limousine ram as an melatonin-

         induced increase of HF activity [154], an increase of growth

         initializing activity of secondary HFs in situ and hair shaft

        elongation in cultured HFs from cashmere goat [21, 155]

       (Table 2). Furthermore, melatonin was reported to induce

          the pro-anagen phase in the New Zealand goat [22] and to

        increase pelage development and cycle frequency in pigs [10]

          (Table 2). Indeed, the list of animal species showing effects of

        melatonin on hair growth is very extensive, and includes

          cashmere goat and other goat species [21, 22, 155, 156], ferrets

          [157], merino sheep [158, 159], mink [19], dogs [24, 160, 161],

           red deer [20], and others [162]. In many of these species the

        overcoat and undercoat fur are populated by primary and

         secondary HFs, and these are altered with change of the

        seasons and their cyclical activity is further disturbed when

      the pineal gland is experimentally removed [154].

      Dietary supplementation with melatonin can increase the

        mitosis rate of secondary HF in cashmere goats during

      spring [21]. Moreover, the administration of melatonin

          (70 mg/day) over 14 days to New Zealand goats resulted in

      increased melatonin blood levels (914 pg/mL versus

         19.9 pg/mL in controls), and this was associated with the

        transition of HFs from telogen (resting phase) into the

       growing pro-anagen phase; HFs of the untreated goats

        remained in the telogen stage [22]. The hair growth-

        promoting effect of melatonin is further supported by the

        finding that it can, dose dependently, stimulate both DNA-

         synthesis and hair shaft elongation in cashmere goat HFs in

         a 6-day ex vivo organ culture assay [155] (Table 2).

      Melatonin at concentrations of 0.1–10 n significantlym

     stimulated epidermal keratinocyte DNA synthesis when

         added to organ-cultured mouse skin with the HFs in the

        resting phase (telogen), although it did not affect keratino-

         cytes of the HF [66]. However, recent murine skin organ

       culture data suggest that melatonin can reduce spontaneous

        apoptosis in HF keratinocytes (as assessed by TUNEL) in

      un-manipulated organ culture of telogen mouse skin,

         confirming also the lack of any proliferative effect on HF

       keratinocytes (as assessed by Ki-67). Interestingly, in this

     study melatonin also significantly down-regulated the

        expression of estrogen receptor ER in the HF matrixa

      and IRS keratinocytes in organ-cultured C57BL/6 mouse

 skin [11].

     Possible mechanisms of melatonin growth stimulatory

       effects might be deduced from assays using keratinocytes,

         the cell population that mainly builds the HF, in which

          melatonin at the concentration of 10 to 1 n increasedlm m

       DNA synthesis, while 1 m inhibited DNA synthesis.m

      Using the ATP bioluminescence viability assay, melatonin

      increased cell proliferation at concentrations of 0.032–20 lm

      [121]. However, while melatonin increased DNA synthesis

      in serum-free media (synchronized cell cycle), melatonin

       had the opposite effect in growth factor-containing media

[28].

     Melatonin effects on human hair growth

         Reports on the direct effects of melatonin on human hair

     growth in vitro (using microdissected, organ-cultured

        anagen VI human scalp HFs) have been conflicting. One

         organ culture study using female and male HFs from scalp

        skin reported a stimulation of hair shaft elongation with

        30 melatonin, while concentrations in the m rangelm m

       were inhibitory [26]. In the former concentration the

        stimulatory effect was seen only during the early culture

        period from day 1–5, and this apparent hair growthÔ Õ

       stimulation may instead reflect an enhanced protection of

     melatonin-treated organ-culture HFs from the conse-

      quences of general tissue damage after microdissection/

      wounding. This interpretation concurs with a subsequent

        independent study that reported no effects of melatonin on

        human scalp hair growth or hair matrix proliferation in

        vitro over a wide range of melatonin concentrations [11].

          However, at present it has to be stated that melatonin at

10)12 – 10)6        m does not influence hair growth in vitro,

     whereas melatonin at 3.0 10·
)5

     m does [11, 26] (Table 2).

         Data on the clinical effects of melatonin on human scalp

           hair growth are limited. So far, there has been only a single

     double-blind, randomized, placebo-controlled trial in 40

       women aged 20–70 years diagnosed with diffuse alopecia

           (AD) or AGA [25]. In this study, 1 mL of a 0.1%

    melatonin-containing alcohol solution was topically

         applied each evening for 6 months. To evaluate the effect

       of melatonin treatment on hair growth, trichograms were

          taken in defined areas on the frontal and occipital region of

          scalp hair before treatment and after 3 and 6 months of

       treatment. After 6 months of treatment, the occipital

       trichograms from women with AGA treated with melatonin

          showed an increase in the anagen rate from 76.3% to 85%

        (+8.7%) while the placebo showed only an increase from

          78.22% to 82.11% (+3,89) (odds ratio 1.90; = 0.012). InP

         women with AD, however, the increase of anagen rate was

         from 82.2% to 83.8% (+1.6%) while there was a reduction

         of the anagen rate from 83.16% to 81.13% ( 2.03%) in)

       women treated with placebo (odds ratio of 1.41;

       P = 0.046). Thus, growth modulation induded by

         melatonin was slightly relevant in AGA, while in AD only

       marginal, however statistical significant in both cases [25].

          In this pilot study, melatonin did not influence the rate of

          anagen hair growth in HF located in the frontal scalp area

  Melatonin and hair
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          of women with AGA – the area mostly affected by hair

       thinning in this disorder, while the less androgen-sensitive

        occipital scalp skin area appeared to be positively influ-

        enced by melatonin. This effect might be interpreted as

        induction of hair growth by prolongation of the anagen

         phase, in part via retardation of the transition to catagen

        and/or by promotion of the transition from telogen to

         anagen, as has been observed in animals [22]. However, as

           the effects of melatonin in this study were only tested in six

         patients with AGA and 14 patients with AD (against equal

        number of patients treated with placebo), this study would

          require to be repeated with a larger number of patients for

         one diagnosis, and for a longer period. Moreover, it may

       also benefit from being complemented with additional hair

     growth parameters (e.g., phototrichogram, global hair

      photography, effluvium count, hair number, and shaft

        diameter), before sound conclusions can be drawn on the

         clinical efficacy of topical melatonin as an agent in the

       management of defined hair loss disorders. Also, while

      cutaneous penetration of topically applied melatonin has

        been reported [163, 164], the depth of melatonin penetra-

         tion and the exact concentrations that are reached in the

      HF, especially the matrix keratinocytes remain open

      questions. However, topically applied melatonin may trig-

      ger complex secondary signaling cascades (from epidermis)

        that may then affect the pilosebaceous unit also indirectly.

      The impact of melatonin on hair pigmentation

       Melatonin effects on pigmentation have been reviewed in

          detail, focusing on skin [3] and the HF [4]. Hair shaft

       pigmentation is generated by specialized melanocytes of the

       HF pigmentary unit, whose melanogenic activity is strictly

       coupled to HF cycling (i.e., anagen III–VI) [165–170].

       Growth, survival, and melanogeneic activity of these spe-

       cialized melanocytes underlies complex, species- site- and HF

      type-dependent controls, which are only partially under-

         stood, and can not simply be equated with those recognized

       for epidermal melanocytes [3, 171–173] (Table 2). While

   melanocortins like alpha-melanocyte-stimulating hormone

     (a-MSH) and adrenocorticotrophic hormone (ACTH) have

        been the main focus of endocrinologists interested in hair

    pigmentation, many additional (neuro-)hormones, neuro-

     trophins, neuropeptides and neurotransmitters are involved

        in the control of hair pigmentation in various mammalian

     species (e.g., beta-endorphine, histamine, estrogen, POMC,

          and NGF, to name but a few prominent examples) [4, 174–

        177]. Melatonin has been described to increase number of

   melanocytes in culture [120].

       Early observations in farm and laboratory animals have

     reported that pinealectomy and/or melatonin administra-

         tion altered hair shaft color in addition to hair growth,

           cycling or molting [6, 8, 10, 54, 152, 178] (Table 2). These

       observations have long suggested that melatonin may be

      one such neuroendocrine regulator of HF pigmentation.

        However, the literature continues to paint a rather confus-

         ing picture, and so, evidence that melatonin is indeed an

     important regulator of follicular melanogenesis under

   physiological conditions remains inconclusive.

       While the classical skin lightening effects of melatonin,Ô Õ

      which reflect primarily the induction of melanosome

      aggregation e.g., in frog melanophores, are well-known

          from work in amphibian skin [2, 179], much less is known

        on the effect of melatonin on mammalian melanocytes [3,

        120, 165, 180, 181] Given the numerous biological differ-.

       ences between epidermal and HF melanocytes [3, 172],

          however, it is quite unclear whether these findings are at all

        relevant to hair pigmentation. Evidently, this is even more

         the case for the reported inhibitory effects of melatonin on

       melanoma cell melanogenesis and/or growth, which may be

        antagonized in part by -MSH [119, 182]. Therefore, thea

      best currently available evidence for pigmentary effects

        comes from organ culture studies using hamster, mouse and

          human HFs – all of which are hampered by the shortcom-

        ings and limitations that are inherent to such complex

     assays [6, 8, 118, 176, 183].

       Melatonin (0.1 n –1 ) reportedly inhibits the post-m lm

        tyrosinase steps of melanogenesis in hamster HFs [118], and

        we have found that high dose-melatonin (0.01–100 ) canlm

      inhibit follicular tyrosinase activity in organ-cultured mouse

          skin with all HFs in anagen growth phase [66] (Table 2).

      Thody and co-workers reported that melatonin administra-

         tion slightly reduced coat darkening in young mice in vivo,

       when hair re-growth after shaft plucking was examined

        [176]. However, when we checked the effect of 0.001–

        1000 n melatonin on organ-cultured human scalp HFs inm

        anagen, no consistent and significant effects on the histo-

       chemcially detectable melanin content of human anagen VI

          hair bulbs in situ could be identified (as assessed by quan-

     titative Masson-Fontana histochemistry) [11] (Table 2).

        While this study certainly does not rule-out effects of

      melatonin on human HF pigmentation under physiological

           conditions, it makes it likely that this indole is not a major

       modulator of human hair pigmentation. This conclusion is

         further supported by the lack of case reports of pigmentary

     effects induced by melatonin dietary supplementation,

      despite the copious, almost epidemic consumption ofÔ Õ

      sometimes massive oral doses of melatonin worldwide.

  Conclusions and perspectives

       In summary, murine HFs express transcripts and protein

       for the melatonin membrane receptor (MT2) and mRNA

       for the putative nuclear melatonin receptors (ROR ) [11].a

      These intra-follicular melatonin receptors may be function-

        ally active, as their stimulation by melatonin can down-

      regulate both HF keratinocyte apoptosis and estrogen

        receptor- expression in situ [11]. Together with the facta

        that MT2 and ROR expression in murine skin area

      strikingly hair-cycle dependent, this raises the possibility

       that melatonin is somehow involved in hair-cycle control.

       Even more importantly, murine and human HFs are

      important sites of extrapineal melatonin synthesis and

       display a genuine melatoninergic system, which can be

   stimulated by catecholamines [11].

      The two most significant remaining questions are:

        (i) What is the principal requirement for melatonin by

      HFs under physiological and pathological conditions and

     (ii) can melatonin administration be therapeutically

       exploited for the clinical management of hair growth

       disorders? Despite much suggestive in vivo evidence from

       the older literature of melatonin being an important
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       modulator of hair growth, cycling, molting and pigmenta-

         tion in selected species (Table 2), the available evidence that

     melatonin substantially and reproducibly alters hair

       growth, pigmentation and/or cycling in mouse or human

     HFs under conditions remains unsatisfactory.physiological

         Because of the potency of melatonin as a free radical

        scavenger [12, 63, 64], its anti-apoptotic properties in some

         systems [28, 34, 184, 185] and its proposed capacity to

       stimulate DNA repair [62, 186], the metabolically active

     and proliferatively active (but exceptionally damage-sensi-

       tive) anagen hair bulb may exploit melatonin synthesis

      in loco as a cytoprotective and apoptosis-suppressive

      strategy [11]. This concept deserves systematic exploration.

         If confirmed, it may become exploitable in the context of

     chemotherapy-induced alopecia [187–189]. Given that ana-

      gen termination by premature entry into apoptosis-driven

          HF regression (catagen) lies at the heart of essentially all of

         the clinically most relevant hair loss disorders [94, 190], it

        therefore certainly is a key challenge for future, clinically

      relevant research into the melatonin-hair connection toÔ Õ

      clarify whether and under which circumstances defined

       doses of melatonin effectively inhibit human HF keratino-

   cyte apoptosis in situ.

      Also, the documented down-regulatory effect of melato-

          nin on ER- expression may render the HF less sensitive toa

        stimulation by estrogens [144]. In addition to the intriguing

      endocrine link between estrogens and melatonin, another

      one exists between prolactin and melatonin. Melatonin

       serum levels have long been recognized to modulate

         pituitary prolactin secretion [22, 154]. In view of our recent

         finding that both murine pelage HFs and human scalp HFs

      express prolactin and prolactin receptors and employ

      prolactin receptor stimulation to induce catagen [142,

        143], it will be interesting to study whether exogenous

        melatonin and/or melatonin generated by the HF itself has

     any impact on follicular prolactin synthesis.

        This begs the question: does melatonin exert its most

      important hair growth-modulatory properties in vivo and

      in physiological concentrations , e.g., via theindirectly

      estrogen/prolactin axes sketched here? Perhaps, this ex-

           plains, at least in part, why it has been so difficult to

     actually prove hair growth- and/or pigmentation-modula-

       tory effects of melatonin? Moreover, given the well-recog-

        nized regulation of clock gene expression and activity by

       melatonin (e.g., in birds, fish, mice nonhuman primates

        [191–194], and the potential importance of clock genes in

    hair-cycle control [195], species-dependent hair-cycle-regu-

      latory effects of intrafollicularly generated melatonin may

        also result from targeting the expression/ activity of clock

          genes, some of which may actually be expressed in the HF.

          Apart from its evident relevance for the – as yet unknown

      – auto-regulation of intrafollicular melatonin synthesis the

      stimulation of HF melatonin synthesis by catecholamines

      raises the question whether this melatoninergic system

     primarily has inducible, hair growth-regulatory functions,

        or serves to protect the HF against systemic stressors

        (sensed and activated by high noradrenaline levels [138]. If

       the latter speculation holds true, stress-induced hair loss

       might result from an imbalance between increased systemic

        noradrenalin levels and the HF s inability to protect itselfÕ

     via the production of sufficient melatonin.

     Exploration of the melatonin-hair connection likely

        holds lessons to better understand the role of melatonin

         in other skin appendages as well – especially the largest

        one of all: the mammary gland! It deserves mentioning

        here that melatonin has long been recognized as an

      inhibitor of mammary gland development and growth

 [196, 197].

       In short, with the recent recognition of melatonin

        receptor expression and melatonin synthesis in the HFs of

        mouse and human, and the tremendous recent progress in

     understanding the molecular mechanisms which underlie

     melatonin s vexingly pleiotropic functions (amply docu-Õ

         mented on the pages of this journal throughout the past

       decade), it has now become fascinating, clinically impor-

      tant, and scientifically productive to systematically follow-

          up, at long last, the existing ancient leads to an important

     role for melatonin in hair biology.
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